An Adelic Causality Problem Related to Abelian L–functions

نویسنده

  • Jean-François Burnol
چکیده

We associate to the global field K a Lax–Phillips scattering which has the property of causality if and only if the Riemann Hypothesis holds for all the abelian L–functions of K. As a Hilbert space closure problem this provides an adelic variation on a theme initiated by Nyman and Beurling. The adelic aspects are related to previous work by Tate, Iwasawa and Connes. Université de NiceSophia Antipolis Laboratoire J.-A. Dieudonné Parc Valrose F-06108 Nice Cédex 02 France [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Canonical Arithmetic Height of Subvarieties of an Abelian Variety over a Finitely Generated Field

This paper is the sequel of [2]. In [4], S. Zhang defined the canonical height of subvarieties of an abelian variety over a number field in terms of adelic metrics. In this paper, we generalize it to an abelian variety defined over a finitely generated field over Q. Our way is slightly different from his method. Instead of using adelic metrics directly, we introduce an adelic sequence and an ad...

متن کامل

Riemann-Roch Theorem, Stability and New Zeta Functions for Number Fields

In this paper, we introduce new non-abelian zeta functions for number fields and study their basic properties. Recall that for number fields, we have the classical Dedekind zeta functions. These functions are usually called abelian, since, following Artin, they are associated to one dimensional representations of Galois groups; moreover, following Tate and Iwasawa, they may be constructed as in...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Classical and adelic automorphic forms

That interesting new L functions with Euler products arise in the classical theory of modular forms is in some sense an accident, and even a bit deceptive. For algebraic number fields other than Q the relationship between classical forms and L functions is more complicated. It ought to be no surprise to anyone familiar with John Tate’s thesis that the correct groups with which to do automorphic...

متن کامل

On Generalized Functions in Adelic Quantum Mechanics

Some aspects of adelic generalized functions, as linear continuous functionals on the space of Schwartz-Bruhat functions, are considered. The importance of adelic generalized functions in adelic quantum mechanics is demonstrated. In particular, adelic product formula for Gauss integrals is derived, and the connection between the functional relation for the Riemann zeta function and quantum stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000